贪心算法

在求最优解问题的过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解,这种求解方法就是贪心算法。
从贪心算法的定义可以看出,贪心法并不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。
我们看看下面的例子
例1 均分纸牌(NOIP2002tg)
[问题描述] 有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若干张纸牌,然后移动。移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。例如 N=4,4 堆纸牌数分别为:
  ① 9 ② 8 ③ 17 ④ 6
移动3次可达到目的:
  从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。
[输 入]:键盘输入文件名。
文件格式:N(N 堆纸牌,1 <= N <= 100)   A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000) [输 出]:输出至屏幕。格式为:所有堆均达到相等时的最少移动次数。 [输入输出样例] a.in:  4  9 8 17 6 屏慕显示:3 算法分析:设a[i]为第i堆纸牌的张数(0<=i<=n),v为均分后每堆纸牌的张数,s为最小移到次数。 我们用贪心法,按照从左到右的顺序移动纸牌。如第i堆(0v,则将a[i]-v张纸牌从第I堆移动到第I+1堆;
(2) 若a[i]b+a,就把a排在b的前面,反之则把a排在b的后面。
源程序:

procedure main4;
var
  s:array[1..20] of string;
  t:string;i,j,k,n:longint;
begin
  readln(n);
  for i:=1 to n do
  begin
    read(k);
    str(k,s[i]);
  end;
  for i:=1 to n-1 do
    for j:=i+1 to n do
      if s[i]+s[j] < s[j]+s[i] then
      begin{交换}
        t:=s[i];
        s[i]:=s[j];
        s[j]:=t;
      end;
  for i:=1 to n do write(s[i]);
end;

贪心算法所作的选择可以依赖于以往所作过的选择,但决不依赖于将来的选择,也不依赖于子问题的解,因此贪心算法与其它算法相比具有一定的速度优势。如果一个问题可以同时用几种方法解决,贪心算法应该是最好的选择之一。